Difference between revisions of "Alphafold"

From HPC Guide
Jump to navigation Jump to search
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==== '''Alphafold''' ====
+
== Alphafold ==
AlphaFold is an artificial intelligence (AI) program developed by Alphabets's/Google's DeepMind which performs predictions of protein structure.
+
AlphaFold is an artificial intelligence (AI) program developed by DeepMind (part of Alphabet/Google) that predicts protein structures.
  
==== '''Databases:''' ====
+
=== Databases ===
Mounted on nodes with gpu, located at /alphafold_storage/alphafold_db.
+
The necessary databases are mounted on nodes with GPUs and are located at `/alphafold_storage/alphafold_db`.
  
===== Usage: =====
+
=== Usage ===
use run_alphafold.sh script located at /powerapps/share/centos7/alphafold/alphafold-2.3.1/run_alphafold.sh
+
To run AlphaFold, use the `run_alphafold.sh` script located at `/powerapps/share/centos7/alphafold/alphafold-2.3.1/run_alphafold.sh`.
  
Script reference:
+
===== '''Required Parameters''': =====
<code>Required Parameters:
+
* `-d <data_dir>`: Path to the directory of supporting data.
-d <data_dir>         Path to directory of supporting data
+
* `-o <output_dir>`: Path to a directory that will store the results.
-o <output_dir>       Path to a directory that will store the results.
+
* `-f <fasta_paths>`: Path to FASTA files containing sequences. For multiple sequences in a file, it will fold as a multimer. To fold more sequences one after another, separate the files with a comma.
-f <fasta_paths>     Path to FASTA files containing sequences. If a FASTA file contains multiple sequences, then it will be folded as a multimer. To fold more sequences one after another, write the files separated by a comma
 
-t <max_template_date> Maximum template release date to consider (ISO-8601 format - i.e. YYYY-MM-DD). Important if folding historical test sets
 
Optional Parameters:
 
-g <use_gpu>          Enable NVIDIA runtime to run with GPUs (default: true)
 
-r <run_relax>        Whether to run the final relaxation step on the predicted models. Turning relax off might result in predictions with distracting stereochemical violations but might help in case you are having issues with the relaxation stage (default: true)
 
-e <enable_gpu_relax> Run relax on GPU if GPU is enabled (default: true)
 
-n <openmm_threads>  OpenMM threads (default: all available cores)
 
-a <gpu_devices>      Comma separated list of devices to pass to 'CUDA_VISIBLE_DEVICES' (default: 0)
 
-m <model_preset>    Choose preset model configuration - the monomer model, the monomer model with extra ensembling, monomer model with pTM head, or multimer model (default: 'monomer')
 
-c <db_preset>        Choose preset MSA database configuration - smaller genetic database config (reduced_dbs) or full genetic database config (full_dbs) (default: 'full_dbs')
 
-p <use_precomputed_msas> Whether to read MSAs that have been written to disk. WARNING: This will not check if the sequence, database or configuration have changed (default: 'false')
 
-l <num_multimer_predictions_per_model> How many predictions (each with a different random seed) will be generated per model. E.g. if this is 2 and there are 5 models then there will be 10 predictions per input. Note: this FLAG only applies if model_preset=multimer (default: 5)
 
-b <benchmark>        Run multiple JAX model evaluations to obtain a timing that excludes the compilation time, which should be more indicative of the time required for inferencing many proteins (default: 'false')</code>
 
  
===== Sample Qsub Script: =====
+
* `-t <max_template_date>`: Maximum template release date to consider (ISO-8601 format, i.e., YYYY-MM-DD). This parameter helps in folding historical test sets.
create folder for output in your home dir mkdir ~/alphafold_output then run the script
 
  
* you may download dummy_test folder from this github as well for the output
+
===== '''Optional Parameters''': =====
 +
* `-g <use_gpu>`: Enable NVIDIA runtime to run with GPUs (default: true).
 +
* `-r <run_relax>`: Whether to run the final relaxation step on the predicted models (default: true).
 +
* `-e <enable_gpu_relax>`: Run relax on GPU if GPU is enabled (default: true).
 +
* `-n <openmm_threads>`: OpenMM threads (default: all available cores).
 +
* `-a <gpu_devices>`: Comma-separated list of devices to pass to 'CUDA_VISIBLE_DEVICES' (default: 0).
 +
* `-m <model_preset>`: Choose preset model configuration: 'monomer', 'monomer_casp14', 'monomer_ptm', or 'multimer' (default: 'monomer').
 +
* `-c <db_preset>`: Choose preset MSA database configuration ('reduced_dbs' or 'full_dbs', default: 'full_dbs').
 +
* `-p <use_precomputed_msas>`: Whether to read MSAs written to disk (default: 'false').
 +
* `-l <num_multimer_predictions_per_model>`: Number of predictions per model when using `model_preset=multimer` (default: 5).
 +
* `-b <benchmark>`: Run multiple JAX model evaluations to obtain a timing that excludes compilation time (default: 'false').
  
<nowiki>https://github.com/kalininalab/alphafold_non_docker</nowiki>
+
==== Example Slurm Script ====
 +
This script demonstrates how to submit an AlphaFold job using SLURM:
  
* /home/alphafold_folder/alphafold_multimer_non_docker/example/query.fasta = this is sample data, please point to the data you need to query.
 
* The lines '''export CUDA_VISIBLE_DEVICES=$(python3 /powerapps/scripts/check_avail_gpu.py)''' and the flag '''a $CUDA_VISIBLE_DEVICES''' make it so you can use the next free GPU on the server, please leave it as is.
 
* $ALPHAFOLD_SCRIPT_PATH = /powerapps/share/centos7/alphafold/alphafold-2.3.1/
 
* $ALPHAFOLD_DB_PATH = /alphafold_storage/alphafold_db
 
<syntaxhighlight lang="bash">
 
#!/bin/bash
 
#PBS -l select=1:ncpus=4:ngpus=1
 
##choose any gpu queue: gpu/gpu2
 
#PBS -q gpu2
 
 
# Description: AlphaFold-Multimer (Non-Docker) with auto-gpu selection
 
 
# load conda env
 
module load alphafold/alphafold_non_docker_2.3.1
 
 
# call to check_available_gpu python script
 
# returns the param for CUDA_VISIBLE_DEVICE which the run alphafold script uses
 
 
export CUDA_VISIBLE_DEVICES=$(python3 /powerapps/scripts/check_avail_gpu.py)
 
# echo "CUDA_VISIBLE_DEVICES: $CUDA_VISIBLE_DEVICES"
 
bash $ALPHAFOLD_SCRIPT_PATH/run_alphafold.sh -d $ALPHAFOLD_DB_PATH -o ~/output_dir -f $ALPHAFOLD_SCRIPT_PATH/examples/query.fasta -t 2020-05-14 -a $CUDA_VISIBLE_DEVICES
 
</syntaxhighlight>
 
 
===== Sample Slurm Script =====
 
 
<syntaxhighlight lang="bash">
 
<syntaxhighlight lang="bash">
 
#!/bin/bash
 
#!/bin/bash
Line 64: Line 37:
 
#SBATCH --ntasks=1                        # Number of tasks (processes)
 
#SBATCH --ntasks=1                        # Number of tasks (processes)
 
#SBATCH --cpus-per-task=4                # Number of CPU cores per task
 
#SBATCH --cpus-per-task=4                # Number of CPU cores per task
 +
#SBATCH --mem=32G                        # request RAM
 
#SBATCH --gres=gpu:1                      # Request 1 GPU
 
#SBATCH --gres=gpu:1                      # Request 1 GPU
 
#SBATCH --output=alphafold_%j.out        # Standard output (with job ID)
 
#SBATCH --output=alphafold_%j.out        # Standard output (with job ID)
 
#SBATCH --error=alphafold_%j.err          # Standard error (with job ID)
 
#SBATCH --error=alphafold_%j.err          # Standard error (with job ID)
  
# Description: AlphaFold-Multimer (Non-Docker) with auto-gpu selection
+
# Description: AlphaFold-Multimer (Non-Docker) with auto-GPU selection
  
 
# Load the required module/environment
 
# Load the required module/environment
Line 74: Line 48:
  
 
# Run the AlphaFold script
 
# Run the AlphaFold script
bash $ALPHAFOLD_SCRIPT_PATH/run_alphafold.sh -d $ALPHAFOLD_DB_PATH -o ~/output_dir -f $ALPHAFOLD_SCRIPT_PATH/examples/query.fasta -t 2020-05-14 -a $CUDA_VISIBLE_DEVICES
+
bash $ALPHAFOLD_SCRIPT_PATH/run_alphafold.sh -d $ALPHAFOLD_DB_PATH -o ~/output_dir -f $ALPHAFOLD_SCRIPT_PATH/examples/query.fasta -t $(date +%Y-%m-%d)
 +
</syntaxhighlight>
  
</syntaxhighlight>
+
==== Important Notes ====
 +
* '''Output Directory''': You can specify the output directory using the `-o` parameter to store the results. This directory can be anywhere you choose.
 +
* The `-t` (max_template_date) parameter defines the maximum release date of templates to consider in the format `YYYY-MM-DD`. This is crucial when working with historical test sets, as it restricts the search for templates to those released on or before the specified date. You can use different dates depending on your requirements, such as the current date with `$(date +%Y-%m-%d)` or a specific historical date, like `-t 2021-12-31`.
 +
* '''Memory Requirements''': For monomer jobs, at least '''32GB of RAM''' is recommended. For multimer jobs, allocate at least '''64GB of RAM'''; however, for more complex or large structures, consider using '''128GB or more''' to ensure stability.
 +
 
 +
==== Additional Resources ====
 +
* You can download the `dummy_test` folder for sample output from this [https://github.com/kalininalab/alphafold_non_docker The Github Repository].
 +
* For sample data, you can use `/home/alphafold_folder/alphafold_multimer_non_docker/example/query.fasta` or provide your own data for queries.

Latest revision as of 14:01, 28 October 2024

Alphafold

AlphaFold is an artificial intelligence (AI) program developed by DeepMind (part of Alphabet/Google) that predicts protein structures.

Databases

The necessary databases are mounted on nodes with GPUs and are located at `/alphafold_storage/alphafold_db`.

Usage

To run AlphaFold, use the `run_alphafold.sh` script located at `/powerapps/share/centos7/alphafold/alphafold-2.3.1/run_alphafold.sh`.

Required Parameters:
  • `-d <data_dir>`: Path to the directory of supporting data.
  • `-o <output_dir>`: Path to a directory that will store the results.
  • `-f <fasta_paths>`: Path to FASTA files containing sequences. For multiple sequences in a file, it will fold as a multimer. To fold more sequences one after another, separate the files with a comma.
  • `-t <max_template_date>`: Maximum template release date to consider (ISO-8601 format, i.e., YYYY-MM-DD). This parameter helps in folding historical test sets.
Optional Parameters:
  • `-g <use_gpu>`: Enable NVIDIA runtime to run with GPUs (default: true).
  • `-r <run_relax>`: Whether to run the final relaxation step on the predicted models (default: true).
  • `-e <enable_gpu_relax>`: Run relax on GPU if GPU is enabled (default: true).
  • `-n <openmm_threads>`: OpenMM threads (default: all available cores).
  • `-a <gpu_devices>`: Comma-separated list of devices to pass to 'CUDA_VISIBLE_DEVICES' (default: 0).
  • `-m <model_preset>`: Choose preset model configuration: 'monomer', 'monomer_casp14', 'monomer_ptm', or 'multimer' (default: 'monomer').
  • `-c <db_preset>`: Choose preset MSA database configuration ('reduced_dbs' or 'full_dbs', default: 'full_dbs').
  • `-p <use_precomputed_msas>`: Whether to read MSAs written to disk (default: 'false').
  • `-l <num_multimer_predictions_per_model>`: Number of predictions per model when using `model_preset=multimer` (default: 5).
  • `-b <benchmark>`: Run multiple JAX model evaluations to obtain a timing that excludes compilation time (default: 'false').

Example Slurm Script

This script demonstrates how to submit an AlphaFold job using SLURM:

#!/bin/bash
#SBATCH --job-name=AlphaFold-Multimer     # Job name
#SBATCH --partition=gpu2                  # Specify GPU partition
#SBATCH --nodes=1                         # Number of nodes
#SBATCH --ntasks=1                        # Number of tasks (processes)
#SBATCH --cpus-per-task=4                 # Number of CPU cores per task
#SBATCH --mem=32G                         # request RAM
#SBATCH --gres=gpu:1                      # Request 1 GPU
#SBATCH --output=alphafold_%j.out         # Standard output (with job ID)
#SBATCH --error=alphafold_%j.err          # Standard error (with job ID)

# Description: AlphaFold-Multimer (Non-Docker) with auto-GPU selection

# Load the required module/environment
module load alphafold/alphafold_non_docker_2.3.1

# Run the AlphaFold script
bash $ALPHAFOLD_SCRIPT_PATH/run_alphafold.sh -d $ALPHAFOLD_DB_PATH -o ~/output_dir -f $ALPHAFOLD_SCRIPT_PATH/examples/query.fasta -t $(date +%Y-%m-%d)

Important Notes

  • Output Directory: You can specify the output directory using the `-o` parameter to store the results. This directory can be anywhere you choose.
  • The `-t` (max_template_date) parameter defines the maximum release date of templates to consider in the format `YYYY-MM-DD`. This is crucial when working with historical test sets, as it restricts the search for templates to those released on or before the specified date. You can use different dates depending on your requirements, such as the current date with `$(date +%Y-%m-%d)` or a specific historical date, like `-t 2021-12-31`.
  • Memory Requirements: For monomer jobs, at least 32GB of RAM is recommended. For multimer jobs, allocate at least 64GB of RAM; however, for more complex or large structures, consider using 128GB or more to ensure stability.

Additional Resources

  • You can download the `dummy_test` folder for sample output from this The Github Repository.
  • For sample data, you can use `/home/alphafold_folder/alphafold_multimer_non_docker/example/query.fasta` or provide your own data for queries.